
On the transport equations for a one-component relativistic gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 1861

(http://iopscience.iop.org/0305-4470/9/11/011)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen., Vol. 9. No. 11, 1976. Printed in Great Britain. @ 1976 

On the transport equations for a one-component relativistic 
gas 

E Alvarez 
Departmento de Fisica Tebrica, Universidad Aut6noma de Madrid, Canto Bhnco, Madrid 
34, Spain 

Received 17 February 1976, in final form 14 June 1976 

Abstract. We use a generalization of the relativistic Grad equations when time reversal 
symmetry for the scattering matrix does not hold, in order to obtain a new set of transport 
equations for a gas in the vicinity of the Juttner-Synge equilibrium. In the particular 
‘Fourier situation’ our heat equation very much resembles that of Cattaneo and Vernotte. 
However, when €T invariance is introduced, this equation reduces to the usual Eckart-like 
one. Nearly identical conclusions are obtained for a ‘Bel-like’ gas. 

1. Introduction 

In two fundamental papers (Anderson 1970, Stewart 1971) a relativistic version of the 
Grad method of moments for constructing approximate solutions of the Boltzmann 
equation, has been introduced. As has been remarked by Anderson, this method has 
some advantages over the older Chapman-Enskog-Hilbert method, and, in particular, 
it leads to the phenomenological ‘Eckart’ transport equations (Eckart 1940) for heat 
propagation and the shear and bulk viscosities? 

In Anderson (1970) and Stewart (1971), and also in earlier work by Chernikov 
(1964) and Marle (1969), the assumption was made that the ‘scattering matrix’ is 
invariant under both time reversal and space reflection; that is, if 
W(p,  4;  p ’ ,  4’) f (x ,  p ) f ( x ,  q)wpwqop,wqq gives the number of collisions in the four- 
volume q at xp ,  between particles with initial momentap, 9 in the ranges up, wq and final 
momenta p ’ ,  4’ in the ranges wp,, wqt, the assumption made (which we shall call ‘PT 
invariance’) is that 

the four-momentum being conserved in collisions, i.e., 

p a  +4“ =p’” +q’“. 

t We shall use signature +2 for the metric of the space-time manifold V,, and the Einstein summation 
convention, with a, p, . . , = 0 , 1 , 2 , 3  and i, j .  . . = 1 ,2 ,3 .  hp” is the projection tensor hp’ = gp” + upup, and 
U’ is the four-acceleration of the fluid, U’ = upV,u”, up being the field of fluid mean four-velocities. 
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The aim of this paper is to explore the consequences of relaxing these assumptions. 
We believe that this paper has an interest which is not only formal, because as Bel and 
Martin (1975) have shown, in the framework of a predictive relativistic mechanics, 
hypothesis (3b)  (conservation of ‘kinetic four-momentum’ in collisions) appears to be 
justified only when the system is conservative. (Up to the first order in perturbation 
theory, an example of a conservative system would be a short-range Poincar6-invariant 
predictive system, which satisfies Newton’s law and is invariant under time reversal.) In 
particular, if, when studying the electromagnetic interaction from this point of view, one 
adopts the retarded Lienard-Wiechert potentials, the system is not T-invariant and the 
theory does not lead generally to (3b). 

Of course, the scattering experiments performed put a severe upper bound on this 
non-conservation over the usual range of energies; say, the quantities 

4 IP 
tC( ‘ p p  +qP - 

must be very ‘weak’. This fact will be used in the sequel for generalizing the usual 
‘normal solution’ approximation. Physically, it is possible that this kind of ‘non-T- 
invariant’ interaction plays an important role in ‘initial’ ( R / R o  << 1) cosmological 
situations, but in fact it is not clear that a classical (non-quantal) theory, such as the one 
developed in this paper, could be used for this purpose. 

The kind of physical situation that we had in mind is then, an idealized ‘cosmological 
collisional gas’ which is not very far from equilibrium. It is well known that the 
Juttner-Synge (Boltzmann equilibrium) function is not compatible with Robertson- 
Walker space-times, and so in § 5 we carry out the calculation for a gas very close to the 
Bel (‘Liouville equilibrium’) situation, which elsewhere (Alvarez 1976) has proved to 
be compatible with expanding universes. 

The first problem that we must solve is, then, that of obtaining information 
concerning non-equilibrium solutions of the relativistic Boltzmann equation, when the 
distribution functions differ from the local equilibrium distribution by a small amount, 
in the general situation where no symmetries are imposed on the scattering matrix. We 
shall, then, in § 2, generalize the Grad method of Anderson and Stewart, introducing in 
0 3 two types of approximation, which we think are simpler generalizations of the usual 
‘normal solution approximation’. Then we obtain the transport equations correspond- 
ing to these approximations, studying their limits when restoring the symmetries (3) of 
the scattering matrix. 

Then, in P 5 ,  we shall study the same problem, but taking the local Bel function (Bel 
1969, Alvarez 1976) as the zero-order distribution function, instead of the Juttner- 
Synge function, in view of possible applications in cosmology. 

2. The generalized Grad equations 

Our purpose is to solve the Boltzmann equation 

Wx)f(x, P )  = Q ( f ,  f) (4) 

where 2 ( X )  is the Lie derivative with respect to X ,  X being a vector on the phase space 
P( V,) with components 

x E ( p a ,  Q.3-p’ *” PPP ” 1 
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The one-particle phase space P( V4) is defined as 

P(V4)'{(X7P),XE V4,PEPXl, 

P, being the mass hyperboloid at the point x of the space-time manifold V,, i.e. the set 
of vectors, 

2 2 0  P x = { p ~ T x , p  =-m , p  > O } .  

The second member of the Boltzmann equation is written as (Lichnerowicz and Marrot 
1940) 

Q ( f ,  f )  /{f(X. P')f(X, 4') WI -f(x, P)f(X, 4) wD}Wp'W&%j (5) 

up being the invariant volume element on P,, 
dp' A dp2 A dp3 

k o a  P" I u p  =m 
and WI and WD being related to the scattering matrix W, defined in the introduction, 
by: 

WD w(p,  9 ;  p', q') w1- W P ' ,  4'; p, 4). 
Obviously, when PT invariance (3) holds, one must write WD = W,. 

In order to solve the Boltzmann equation (4), we shall consider only small deviations 
from 'equilibrium',fO(~, p), which we consider, in this paper, to be a local Jiittner-Synge 
function?, i.e., 

fob, p> = B(x) (6) 

where B(x)  is related to the 'particle number density' n(xP) by 

nY 
47rm 3K2( y )  ' B(x) = 

y being defined through h 2  = A 2  = m-* y 2 ;  that is to say, we expand the distribution 
function of the gas, f(x, p) as 

P ( x ,  p )  being an orthogonal set of polynomials in the momentum, with f o  as the 
weight function, n representing the order of the polynomial and a;, a generic 'vector' 
index, i.e., 

- f.f% H" 1 .."n - am,,  - aal ... a,. 
We impose the orthogonality of these polynomials: 

(El-", F) E Ifo(., p)H""H"'u, = wBsnr (8) 

and construct the polynomials by a Schmidt orthogonalization procedure. We begin 
with H" = 1, and take (details are given in Stewart 1971) 

Hc" =p" -CU?(X'). 

t We shall assume that all the particles of the relativistic gas possess the same mass, say m > 0. 
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Then, as (8) implies that (p,  H") = 0, we get 

NCA;' 

w p  =(w, H @ ) = T ; ~ - X N $ A ; ' ,  

where Ao, NC and TGp are the first three moments of f o ( x ,  p ) :  

(9) 

One then decomposes 

H " p  - L y y l i y - p a p  

and gets equations similar to (9) for ayp, pap and A T p y s  by imposing (Pp, H") = 
(ITp, H') = 0. Finally, we also need 

H " P Y = p a p P p Y  -ay;ep - p " P ; P  +-+y* (96) 

If we multiply (7) by H"., and integrate over the mass shell, P , ( p ) ,  we get 

The first three equations of the set (10) (i.e. those corresponding to n = 0, 1,2) are 

Aoao = A 

Wpysa,s = - a ~ P y ( ~ Y - ~ ~ ~ ~ ~ ' ) - ~ ~ P ~ ~ ; '  

Mapa, = w -%AA 0' (1 1) 

where A, W and T p  represent the first three moments of the distribution function 

We further assume that some of these moments are related to the moments of 
fb, P I .  

f o ( x ,  p )  by simple relations; explicitly, we impose the 'matching conditions' 

6A = A  (x")-Ao(x") = 0 

upSNP U,, (Np - NC) = 0 
(12) 

up being the unitary ( U *  = -1) vector colinear to NC (i.e. to h p  in (6)); that is, the mean 
four-velocity of the fluid. The physical meaning of the matching conditions (12) is that 
the natural requirements that the particle number density and the trace of the 
energy-momentum tensor (E = -m2A (x)) usingf, must be the same functions of their 
arguments as they are when calculated using fo. In the usual ('T-invariant') situation 
(Anderson 1970) one needs three more conditions to completely specify the problem; 
conditions that define the local rest frame, i.e. fix up, and are normally taken to be 

W = X .  (12b) 

But as we shall see later, these 'Eckart' matching conditions are not compatible with our 
generalized form of Grad equations, so we will choose the weaker form (12). We 
decompose, as usual, the different tensorial quantities which appear in the calculation in 
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terms of the two tensors at our disposal, i.e. gap and U, : 

and also the moments of the two distribution functions (the zeroth-order one, fo (x ,  p ) ,  
and the one we wish to calculate, f(x, p ) :  

x = n O u Q  =-up  P o  

iy= (/LLg+po)u"uP +pog"P 

T+ = ( p + p ) ~ ~ ~ ~ + p g " ~  + 2 4 ( " ~ ~ ) + T " ~  

m 

W = nu" + j" ( jau,  = 0) 
(4%" = T"" = Tapup = 0). 

Using the matching conditions (12), we first obtain 

n = no /L -3P = Po-3Pol 

(14) 

and by substituting the decompositions (13 )  and (14) in ( l l ) ,  and after some algebra, 
one gets: 

ao= 1 

K1=0  

M12K;  = j" t 
TQP = M S L y  

.j- = p  -Po = 1 4Lo(3M2 + Ms). 
24" = (2M5 - M4) L ; + ~ 3 M 2  K ;  

The set of equations (15) allows us, then, to relate the basic 'transport' quantities, i.e. 
the 'diffusion flux' j " ,  the 'heat flux' 4" and the 'bulk viscosity' 7, to the orthogonal 
polynomials defined by (8) and the coefficients aa, in the expansion (7)  up to n = 2. Up 
to now we have not used the Boltzmann equation. The basic idea of the Grad method of 
moments is to truncate the series (7) at n = 3 (i.e. to suppose a=, = 0 if n 3 3 ) ,  to 
substitute it in the Boltzmann equation (4), (5 ) ,  and linearize it in order to obtain 
equations for the first two coefficients aan (n  = 1,2) .  By substitution in (15) one then 
gets the linear transport equations. 

t It is to be noted that when one imposes the usual 'Eckart' matching condition, Shrp = 0, i.e. j" = 0, one gets 
KZ = 0, that is, 

a, = O .  (15b) 
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To accomplish this operation, one starts from the Boltzmann equation, multiplies it 
by pun E pa' , . . pan and integrates, to obtain 

[pa"9(x)f(x. plop = [pun ( % f ( p f ) f ( 4 ' ) -  wDf(p)f(4))w4 

I,,,, I,,,) 

(16) 

with 
4 

U E Up A Uq A Up' A Oqf. 

Now we use a known theorem (see, for example, Stewart 1971) 

pan=%X)f(x, p)op = v, panpMf(X,  P ) W p  

and also substitute the truncated development (7) in (16), for f ( x ,  p ) :  
L 

f - f o  c a a , e  
n = O  

thus getting 

where 

From 

Dasrys(x) Ip""HB'(p)HY'(4)fO(p)fO(4) WDU 4 * 

17) one gets, independently of assumption (3), 

V,N" = 0 

and w.den ( 3 6 )  holds 

V,l- = 0. (17a) 

If we now linearize, i.e. eliminate the products of type ap,uys with r or s f 0, from the 
calculation, we finally get 

One can show, independently of assumption (3), that 

aS aB 0. ( 1 8 ~ )  Bo,o=Basfi =Bo*W'=g B a B , W = g  B'XB*P'= 

and from the self-orthogonality of the Grad polynomials, g,,H'"" = 0 

&yBa'Pv = gwyBap'pv = 0. (184 
All the information we get from the Boltzmann equation is then contained in equation 
(18). In order to later obtain a more manageable set of equations, we decompose the 
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first ‘collision integrals’ Badrin terms of the basic tensors at our disposal, gap  and up ,  in 
the known form: 

B”+ “BluauP + 11B2gaP 
Ba,Pv ~ 1 2 B I U a U ~ U v  +($ I2B1 -4 12B2)Uagl*Y + 2 1 2 B 2 g a ( P ~ Y )  

BaP~P.E21BlUaUPUP +($ 21B,  -; 21B2)gaPU’I + 2  21B2gP(aUP) (19) 

B”PW E 22 BluauPuPuv + 2 2 B 2 g a P ~ P ~ Y  +22B3uauPgPv + 22Bqu(agP)buY) 
+ 22B5g a ( r g v ) P  + 22B6g&gPv. 

We shall also make use of the third moment of the zeroth-order distribution function, 
which we decompose in a similar manner: 

sfPE [ fopapPpP6+ E W o U p U P U P  3&U(”gBP) 
J 

For n = 0, 1 ,2 ,  equations (18) then clearly read 

VPNP = 0 

V P T P  = Ba,o+aPBa3P +a,Ja’P” 
V SaPP = + aPBaP,P + a r J a p , P v  r 

We introduce the notation 

V r F P  =Ba’.O+VPPP 

Bapso +VrgaPr V S“PP E 
r 

so that we can write equations (21) in the form 

VPNr = 0 

V,PP = + a r J a ~ P u  
&+r = a P ~ a P I ~  + a r ~ a P . r v  

P 

which we call ‘generalized Grad equations’. 

reduce to zero. Explicitly, when (36) holds 

-0  

When ‘PT invariance’ (i.e. equations (3a) ,  ( 3 6 ) )  holds, some collision integrals BaJr  

(23) Bas@, - 

and when (3a )  holds and, in addition, Q ( f o , f o )  = 0 

0, BaP.o= 

so that 
V S@L” = V,$”P/I.. V,l-/” = V r F ;  P 

If, in addition, we suppose the ‘Eckart matching condition’, W = s, that we have seen 
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to imply (15b) a, = 0, we recover the usual relativistic Grad equations, as given by 
Anderson and Stewart: 

However, our aim is to solve the more general equations (22). In order to do this, we 
make use of an approximation which, in our opinion, is the most natural generalization 
of the usual normal solution approximation. 

3. The generalized normal solution approximation 

Let us recall (Stewart 1971) the way in which the normal solution approximation is 
introduced in the usual (‘T-invariant’) situation (i.e., when equations (24) are valid). 
The fourth equation of the set (10) (i.e., the one obtained for n = 3) is 

where cuyPiE is defined in (9b). But we have truncated our series (7) at n = 3, so uaeP= 0. 
This implies 

S ” P Y =  s;P’+cuy;e(P - e) 
V , S ~ ~ ’ + V ~ [ ( Y ( ; ~ ~ ~ ( ~ ; ~ ~ .  - 7 3 1  = a,$ @,,v 

and the third equation of the set (24) reduces to 

(24b) 

which is to be solved for A P =  P-G in conjunction with WpySa,S = A T P  
(obtained from the third equation of (1 1) when the Eckart matching conditions are 
introduced). When the second term of the left-hand side of (24b) is neglected, this 
equation can be solved algebraically for ATs‘ in terms of gradients of the equilibrium 
quantities, i.e. we obtain a normal solution. 

We can then say that the usual ‘normal solution approximation’ formally consists of 
writing the third equation of (24) as 

v sap’”= aCLyBaP+’ (25) 

i.e., we suppose that the covariant derivatives of the third moments of the two 
distribution functions are equal (to this order of approximation): 

However, in the left-hand side of our equations (22) V,saPr appears instead of V,SaP*. 
The natural approximation in our situation is, then, 

(26)  

This approximation is valid only when both the T violation is ‘weak’ (i.e. we can 
write V,$“BP - V,SaPL”, and we can also write (25) (i.e. the microscopic time and length 
scales are much shorter than the macroscopic ones). We shall call this approximation 
(26) ,  and the equations obtained from it, the ‘first level’ of the approximation, because 

v gaPP = v S“P,’. , P O  
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we can introduce another level, i.e. in addition to (26)' the local 'conservation 
equations' 

We shall call calculations done wi'th (26) and (27 )  the 'second level' approximation?. 

V , P  = 0 .  (27) 

VP? = f l u a  +e; 
VPSoaflF = souaup + s l g a p  + 2s2 (a U P ) + s ; P  

s2au, = S3aa = s3apup = 0 

Introducing now the decompositions (1% (19) and 

%Ua = o  
(28) 

in our generalized Grad equations (22), we get 

4?1=3Lo("B1-2 12B2) 

e= Ky '1B2-2Ly12B2 

4s0 = &[3(22B1 - 22B4) +4  22B5] 

4s1= Lo(3 22B2 + "B5) 

2Sz=2  21B2Kz+(2 22B5-22Bq)L; 

Szp = 22B5L;P. 

It is obvious that 

gap v , s p  = -m 'VJVfJ = 0 

so that the coefficients of the decomposition (28) are not at all independent; they must 
verify So = 4S1.  As these coefficients are related to the 'collision integrals' "bBc by the 
generalized Grad equations (29) there is an integrability condition, i.e. 

B1- 22B4 = 4 "B2. 22 

This condition is identically verified, because the equations (18c) and (18d)  impose on 
the coefficients of the decomposition (19) of BapsPv the conditions 

22 B3 = 22B2 - 22 B1+422B2+22B4=0 -22B3 f Z 2 B 5 + 4  22B6= 0 .  

We note that the 'second level' approximation imposes some restrictions on the 
coefficients "bBc: (27) implies f l  = 0 ,  and from the first equation of (29) we get 

B1 = 2 12B2, another integrability condition, which can be interpreted as a condition 
on the form of the admissible scattering matrices. A sufficient condition for the 
verification of this equation would be the verification of T invariance. 

12 

4. The transport equations 

We begin by analyzing the first equations of the set (29). One can easily show (using 
(14))  that when restoring PT invariance (we shall denote this by lim(PT)), this equation 

t The physical interpretation of the approximations made must possibly be a kind of series development in 
two parameters: one related to the quotient between microscopic and macroscopic time scales and the other 
related to the non-conserved 'momentum' tP  =pu +9O -p'O -9'=. Of course, in the usual 'T-invariant' 
situation, tu 0, and only one 'parameter' is relevant: both levels of our approximation reduce to formula 
( 2 9 .  
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reduces to the usual expression for the local conservation of energy: 

f i+(jL+p)o+T,pa,p+q:,+q,u, = o  (30)  

where O (  = U:,) is the scalar expansion rate, was (= u [ , ; ~ ~  + r i [  U ) is the vorticity tensor, 
amp (= u ( , ; ~ )  + riyp) -jOh,,) is the shear tensor, w (  = ( $ o ~ ~ 1 w y ) 1 / 2 )  is the vorticity 
scalar, and a( = (pwpa””)”2) is the shear scalar. 

In the general situation (where neither ( 3 a )  nor (3b)  holds), this equation is then a 
kind of ‘diffusion equation’ and can be written as 

1 

fi+(jL+p)O+Ta%Tap+q:, +q%, =:Lo(12B1-2 l2B2)* (31)  
Next, we solve the other equations of the set (29) .  To do this, we recall that for the 
Jiittner-Synge function the coefficients of 

is, = s1 = foe($- r - r / y h )  

the decomposition (28)  can be written as 

s y  = 250aap 

where y = m/kT and the relativistic enthalpy, h ( y ) ,  is defined by 

K,(r) being the Kelvin function of order n ;  I? is the ratio of specific heats 

A comparison of (32) ,  (29)  and (15)  immediately yields 
= -77aa8 

7) = -2fo(Ms/22B5) 

T=+9 

and 

with 

(33)  

(34)  

These two equations, (33)  and (34) ,  are exactly the same as the usual ones. One can 
then say that the shear and bulk viscosities are not affected by the removal of the T 
invariance hypothesis (3) .  

Using the decompositions (14)  for T p  and zp it is not difficult to show that 

f 2 ,  = h,p(T” - Gp);p = 1, + t, 
with 

2 1, E q, + q”($Oh, - + waP +U,,) - 2r,Ya” + 4 7 7 ~  U ,  

t, =a,T+iu, +47i(,. 
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Next, by using the following equations of the set (29): 

E = K ;  11B2-2 12B2L; 

2s ;  = 2'lBZK; + ( 2  "B5 -"B4)L; 

and the fifth of ( 1 5 ) ,  

29" = (2M5-M4)L;+c3M2K; 

one gets the 'first level' heat equation 

qP[(1+$D&36)hP" +D6D3(WaP +uPp -U"Up)]+D6D34" 

= 2 D 6 D 3 ( 7 ) ~ " ~ ) ; ~  - ~ T D ~ D ~ U ' U "  

where 

2 2'B2(2M5-M4)-C3M2(22B5-22B4) 
2[4 12B2 21B2+11B2(2 22B5-22B4)] 

0 , 5 0 3  

1 1  B2(2Ms-M4)-~3M2(~~B5-~~B4) 
4 12B2 21B2+11B2(2 22B5-22B4) 

0 3  E 

When there is no energy flux different from the heat flux (this situation leads classically 
to the Fourier equation, so we shall call it the 'Fourier situation'), i.e. U"' = w"' = 6 = 
z i "  = 0, our equation (35) reduces to 

q" + DgD34" = -A D3haPdP ( 1  / ). (36) 

This equation (36) is formally very similar to that proposed by Cattaneo (1958) and 
Vernotte (1958) for solving the problem of the parabolicity of the heat equation. In 
fact, the equation for the propagation of temperature associated with (36) is hyperbolic 
whenever K D6D3, the 'second heat conduction coefficient', is positive?. 

In the second level of the generalized normal solution approximation 

% = O  

K ;  = 2rL; 

which implies, from the third equation of the set (29) 

r = 1 2 ~ 2 ( 1 1 ~ 2 ) - 1 .  

Substituting it in 

2s; = 2 'lB2K; + (2 "B5 - "B4)L; 

and 

2q" = (2M5 -M4)L; + C3M2K; 

t In fact is it not clear that the problem of the infinite velocity for the heat propagation is of relativistic origin; it 
can equally well be interpreted as a result of the way in which transport equations are obtained (expansion in 
powers of a small parameter) implying that physical phenomena are dealt with on a new scale of length and/or 
time. From this point of view the basic reason why the velocity of heat propagation is infinite is that these 
changes of scale do not preserve the light cone but rather tend to make it flat. I am grateful to the referee for 
clarifying this point for me. 
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one gets the 'second level heat equation' 

where 

2M5-M4+2rc3M12 
2 B5-22B4+4r  * B2 h=mpoh'y  22 1 .  

Equation (37) is identical to the usual Eckart-like one, but the expressions for h 
coincide only when r = O t .  

5. A Bel-like gas 

We can also carry out these calculations for a Bel-like gas, i.e. one for which the 
distribution function is a 'perturbation' of the Bel function (Bel 1969, Alvarez 1976) 

fo = B ( x )  eXP(PasPaPB) (38) 
with 

0 = PaaP P 
It is easily shown that a Bel-like gas satisfies 

no = T A B m  32-3/2 

2 u o = m  no+650 

where U(a, b, z )  is the Kummer function, and the physical interpretation of the variable 
z in uniform space-times 

d s 2 =  -(dx0)2+R2K2Sij dx' dx' 

is z = c2R2m2,  5 being a constant, related to the inverse of the 'temperature' by the 
formula r2R2  = ( 2 m k n - l .  In order to obtain transport equationls, we shall assume in 
this paper thatfo is only a 'local' equilibrium function, i.e. both z and B are functions of 
the position. 

t We note that when one uses the 'Eckart' matching conditions N" = N;; (i.e. a, = 0, which implies 
K ,  = K, = 0) our generalized Grad equations (29) are soluble only when PT invariance is restored, i.e. when 
these equations read 

?;=0 

2s; = (2 2 2 ~ 5  - 2 2 ~ 4 ~ ~ ;  

which imply equation (37) with 

- 2M25-M24 A =  
2 "Bg - 22B4' 
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In order for the first two moments Np; and z8 to be conserved, we must have 

B = O  

-1 1/2  where y = m z and B = uwV,B. 

given by 
We can also easily show that for anfo given by (38) the coefficients defined in (28) are 

so= SI= 0 

s y  = 250(Tap 

Nowt we can solve the generalized grad equations (29) for our Bel gas, getting 

r = o  

(which is perhaps an interesting result, since it implies that the bulk viscosity is null for a 
Bel-like gas) and equations (33), (35) and (37) which we have obtained for a Juttner- 
Synge-like gas; the only difference being that the variable y is substituted by y and 

Thus, the usual coefficient of thermal conductivity, 1, becomes null not only when 
D3 = 0, but also if 

PO = 2(m2y2 + 2)p0 = [ (m/kT)  +41p0. 

Of course, a glance at equations (39) shows that this ‘equation of state’ (as the one for 
which is null, i.e. h ( y )  =constant) is never exactly satisfied for a Bel gas. 

6. Conclusions 

In order to calculate the limit of our first level heat equation (35) when PT invariance is 
restored, it is useful to write it in the form 

qa + D 6 D 3 e  = D3S;. (44) 

‘F It is to be noted that the use of the generalized normal solution approximation has, in the Bel situation, a 
different meaning than in the Jiittner-Synge one, owing to the fact that Q(fBel, fBCJ # 0. 
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We first note that 

2M5 - M4 + 2c3iM2 
4 i  2 1 ~ 2  + 2 2 2 ~ 5  - 2 2 ~ 4  

lim(PT)D3 = 

and 

denoting by i= lim(PT)r. Thus we see that we recover the usual Eckart equation only 
when i = 0 and K: = 0. This result could easily be expected, because when the PT 
symmetry for the scattering matrix holds, the two levels of our generalized normal 
solution approximation are equivalent; the lim(FT) of equation (37)then being the same 
as that of equation (35). 

To summarize our results, we have obtained a new set of Grad equations (29), 
generalizing the usual ones when PT invariance does not hold. To solve these 
equations, we have introduced the normal solution approximation in two levels; in both 
levels we recover the usual formulae for the shear and bulk viscosities. In the first level, 
we have obtained a new heat equation that leads to a hyperbolic heat equation in a 
‘Fourier situation’, and in the second level it reduces to the usual Eckart-like equation 
when PT invariance is restored. 

We have also obtained the result that the bulk viscosity of a Bel-like gas is zero, 
which agrees with the fact that this function is compatible with non-stationary space- 
times. The physical meaning of this result is that a cosmological expansion described by 
the Bel function is isentropic (in the usual sense of vector entropy; but in the alternative 
description in terms of a scalar ‘proper time entropy’ (Alvarez 1976) this would not be 
the case). The existence of this kind of ‘isentropic’ cosmological expansion was claimed 
by Schucking and Spiegel(l970). We will discuss this kind of problem in a forthcoming 
paper. 

However, we have not solved the problem of the ‘parabolicity’ of the relativistic heat 
equation in the usual situation in which PT invariance holds, and, furthermore, in view 
of our results, it seems impossible to make PT invariance compatible with the non- 
conservation of the energy-momentum tensor in the framework of this simple theory. 

Acknowledgments 

We are grateful for a number of discussions with Dr L Bel and Dr C Marle, and also for a 
careful reading of the manuscript by Dr J Martin and Dr J L Sanz. The comments of an 
anonymous referee have also been valuable. 

References 

Alvarez E 1976 J. Phys. A :  Math. Gen. 9 687 
Anderson J L 1970 Relativity eds M Carmeli, S I Fickler and L Witten (New York: Plenum) 
Bel L 1969 Astrophys. J. 155 83 
Bel L and Martin J 1975 Ann. Inst. Henri Poincari 22 173 
Chernikov N A 1964 Acta Phys. Polon. 26 1069 
Cattaneo C 1958 C. R .  Acad. Sci.. Paris 241 431 



Transport equations for one -component relativistic gas 

Eckart C 1940 Phys. Rev. 58 919 
Lichnerowin A and Marrot R 1940 C. R.  Acad. Sci., Paris 210 759 
Marle C 1969 Ann. Inst. Henri Poincare' 10 67, 127 
Schucking E L and Spiegel E A 1970 Commun. Astrophys. Space Sci. 1 121 
Stewart J M 1971 Non-equilibrium Relativistic Kinetic Theory (Berlin: Springer) 
Stewart J M and Ellis G F R 1968 J.  Math. Phys. 9 1072 
Vernotte P 1958 C. R .  Acad. Sci., Paris 246 3154 

1875 


